INSTITUTE OF CHEMICAL BIOLOGY UNIVERSITY OF SAN FRANCISCO San Francisco, California 94117 N 67-31398 (ACCESSION NUMBER) (ACCESSION NUMBER) (CODE) (CATEGORY) NGR 05-029-001 - Semi-annual Report 9 June 67 BRAIN AMINO ACIDS AND BIOGENIC AMINES UNDER VARIOUS ATMOSPHERIC MIXTURES Arthur Furst and H. B. Chermside Project Period Submitted by: 1 March 65 30 April 68 Arthur Furst, Ph.D. Director Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION No restrictions requested for this report #### INTRODUCTION AND SUMMARY This semi-annual report covers the period from 1 Nov 66 through 30 April 67. Selected data from earlier reports are included for purposes of comparison and discussion. The major concern of this project is the possible effect of artificial atmospheres upon brain biochemistry with emphasis on amino acids. After exposing rats to gaseous atmospheric mixtures for varying periods, the free amino acid pool and biogenic amine content (with emphasis on serotonin) of the animal's brains are measured. The methodology is essentially the same as described in our earlier reports. For convenience, it is summarized in this report, and suggestions for improvements are made. The concentrations of 40 ninhydrin-positive agents present in the free state in brain tissue of rats are reported. Six groups totalling 44 animals have been studied during this report period. These results are compared with previous results from 27 animals. Some conclusions are drawn from these data and further work is suggested. The number of test animals and exposures permits statistically significant conclusions. The method for serotonin and catechol amines does not have the degree of sensitivity necessary to warrant drawing conclusions as to the effect of our exposure conditions on changes in these biogenic amines. Preliminary development of a more sensitive technique is reported. We plan to continue analysis on more groups of animals in order to substantiate or refute the tentative conclusions we have reached. We plan also to explore other atmospheric mixtures of oxygen in combination with inert gases such as helium, neon, argon, or xenon as the major dilgent compound. #### EXPERIMENTAL PROCEDURE GENERAL: Male rats of different strains were used - Long Evans and Sprague Dawley. These animals weighed between 350 and 500 g and were between 100 and 150 days old. The animals were exposed in our exposure chambers to the experimental or control condition desired for periods from 18 to 72 hours. They were then sacrificed and the whole brain removed within 60 seconds and stored frozen until prepared for analysis. Free amino acids were analyzed semiautomatically by ion exchange chromotography; biogenic amines were analyzed fluorometrically. The resulting data were processed variously on either of two computers and manually. A statistical analysis was made. EXPOSURE: Exposure to experimental atmospheres were conducted in a chamber of our own design and construction. This chamber was reported in the previous semi-annual report dated 12 Dec 66, NASA publication N67-15883. The constitution of the experimental atmosphere mixture was controlled by the input metering system. For exposure to 100% O2, medical oxygen (Ohio Chemical & Surgical Equipment Co.) was used. The chamber was purged immediately after introduction of the animals, and then kept at a constant input flow rate of 0.5 //min controlled by (Ohio Chem & Mfgr.) metering valve. The chamber was vented to the atmosphere through a water trap with a head of 1 to 5 in to insure a pressure just sufficiently greater than ambient atmospheric pressure to prevent contamination from backflow of the surrounding atmosphere. The gases in the chamber were circulated through a purifying system at a rate of 5 to 7 1/min. This system included a cold trap liquid nitrogen (LN), conc. H_2SO_4 , and dampened KOH pellets. It was observed that the LN cold trap apparently extracted all the biological waste H_2O , CO_2 , and NH_3 ; the chemical system was a fail-safe backup to cover the contingency of blockage of the cold trap. For exposures to 20% O_2+80 % He (by volume) atmosphere the same equipment and technique were used with the following exceptions: Both medical oxygen and helium (Matheson, High Purity grade) were used. Input flow was controlled by a gas proportioner (Matheson Model 665) and total input flow was 5 1/min. The chamber was exhausted through a considerably larger manometer with a head of 2 inches of water. The cold trap of the purification system was immersed in a dry ice-acetone mixture, in order that liquification of the oxygen in the atmosphere not alter the proportions of the atmospheric constituents. was no instrumentation for monitoring the atmosphere in the chamber; it was assumed that a flow rate of 5 1/min of the experimental gas mixture through the chamber (which has a volume of 13 L), would be great enough that the consumption of oxygen by a maximum of 10 rats would not significantly alter the ratio of oxygen to helium within the chamber from that prepared at the mixer. All exposures were uninterrupted. Animals were allowed food and water <u>ad libitum</u> both before and during exposures. TISSUE PREPARATION: After exposure, animals were sacrificed by decapitation with a guillotine (Harvard Apparatus) and the whole brain was removed. The olfactory lobes and brain stem were discarded and the brain was divided midsagitally. Each segment was then frozen in L N. For each animal this entire process took less than 60 sec. Each brain segment was individually wrapped in aluminum foil and stored in L N until it was prepared for analysis. One half of each brain was prepared for analysis of free amino acids by a modification of the method of Talan, Moore, & Stein. The tissue was weighed and then crushed by a sharp blow while still frozen and wrapped. As much tissue as possible was transferred to a heavy duty 12 ml screw top centrifuge tube and homogenized in picric acid ultrasonically (Bronwill Biosonik II). The wrapping and surplus tissue were weighed. The homogenate was centrifuged and the supernatent transferred to a bed of Dowex 2X8 or 2X10. The precipitate was washed by rehomogenizing in H₂O; the mixture was then centrifuged again. supernatent was also added to the Dowex bed. solution was washed from the Dowex bed into a 100 ml lyophilization jar with four washings of 0.02 N HCL. This solution, approximately 70 ml, was concentrated to a volume of approximately 4 ml by lyophilization and filtered through diatomaceous earth and an acid-washed Watman #1 filter paper into a small calibrated lyophilization jar. The filter bed was washed with H₂O until the volume in the small jar was approximately 15 ml. solution was concentrated to a volume of 1 ml and then diluted to exactly 2 ml with a citrate buffer. It was then analyzed for concentrations of free amine acids. The special filters and calibrated lyophilization flasks were designed in our labs and were described in detail in our progress report of 9 May 66, NASA publication N66-26235. The other half of each brain was prepared for fluorometric serotonin analysis. This was originally done by a modification of the method of Weisbach; in this pre- paration serotonin is extracted by differential solubility through agueous and alcoholic solvents. As this extraction has not proved successful in combination with the fluorometric technique used, it is being modified as discussed under Serotonin Analysis. AMINO ACID ANALYSIS: The free amino acid content of the brains was analyzed on a Beckman 120-C amino acid analyzer following the method of Moore and Stein as modified in detail by Beckman and also by our group at the Institute of Chemical Biology. Of the 2.0 ml sample prepared, 0.5 ml was applied on each of two columns, one to analyze acidic and neutral, and the other to analyze the basic amino acids. Thus there was ample sample material to allow replication of any analysis in which there appeared to be an instrumental error. The charts from the recorder of the 120-C were evaluated by the dot-counting method. After the quantitative data were obtained, all other calculations were made by computer as described under COMPUTATIONS. SEROTONIN ANALYSIS: The serotonin content of the brains was determined with an Aminco-Bowman spectrofluorophotometer. To 1.0 ml of the sample prepared following the method of Weisbach, 1.0 ml of concentrated reagent HCL was added and mixed in the special fluorescence cuvette. This solution was excited at a wavelength 295my and fluorescence occured at 540 my. Photometer readings were observed and recorded independently by two technicians. Determinations were re-run if these observations varied more than 1% of full scale reflection. This procedure has not produced results we consider satisfactory. Both extraction and detection methods must be made more sensitive. A new technique for extraction has been recently published [WISE, Anal. Biochem 18, 94 (1967)] utilizing different solvents. A preliminary attempt has been made to use this method; results have been better than with the previous technique but as yet we are unable to get values as good as the results reported by Wise. It has been shown that serotonin can be treated with opthalaldehyde to increase fluorescence 20-100% [MAICKEL & MILLER, Anal. Chem. 38, 1937 (1966)]. A claim has been made that this reaction has been successfully used to increase fluorescence of extracted biological serotonin [MAICKEL, personal communications]. The application to biological material has not been published or accurately described, but some preliminary work on this has been done in this laboratory with promising results. #### RESULTS #### INTRODUCTION: This portion of the report contains a presentation of the results of work accomplished during this report period. A comparison is also made with results from our earlier work. The first section lists conditions of exposure for each group of
animals. This is followed by a section explaining the computations made. All data are tabulated and included in this report as an appendix; a short descriptive section is presented as the next section. The last section lists significant results found. ### GROUPS: Following the abbreviated title used for each group is a description of the exposure conditions for this group. SD Cla: Five Sprague Dawley male rats 111 days old at sacrifice; "normal" controls taken from animal quarters with no special handling. SD Clb: Four Sprague Dawley male rats about 45 days old at sacrifice; "Ames controls" (controls for "Ames Exp") exposed to normal atmosphere at 760 mm Hg pressure in special exposure chambers at NASA Ames labs for 72 hr. Ames Exp 1 & 2: Two Sprague Dawley male rats about 45 days old at sacrifice exposed to 100% $\rm O_2$ at 760 mm Hg for 72 hr in special exposure chambers at NASA Ames labs. LE Cla: Five Long Evans male rats 125-135 days old at sacrifice; "normal" controls taken from animal quarters with no special handling. LE Clb: Six Long Evans male rats 41 days old at sacrifice; "normal" controls taken from animal quarters with no special handling. SD 0₁₀₀₋₁₈ Eight Sprague Dawley male rats 113 days old at sacrifice exposed to 100% $\rm O_2$ at 1 atm for 18 hr. SD 0₁₀₀₋₅₀ Three Sprague Dawley male rats 163 days old at sacrifice exposed to 100% O₂ at 1 atm for 50 hr. LE O₁₀₀₋₁₈ Three Long Evans male rats 118 days old at sacrifice exposed to 100% $\rm O_2$ at 1 atm for 18 hr. LE O₁₀₀₋₂₄ Four Long Evans male rats 41 days old at sacrifice exposed to $100\%~{\rm O}_2$ at 1 atm for 24 hr. LE 0₁₀₀₋₂₈ Six Long Evans male rats 117 days old at sacrifice exposed to 100% ${\rm O}_2$ at 1 atm for 28 hr. LE He₈₀O₂₀₋₁₈ Fifteen Long Evans male rats 90-105 days old at sacrifice exposed to a mixture 80% He, 20% $\rm O_2$ at 1 atm for 18 hr. Fluothane Exposures: Nine Long Evans male rats 113 days old at exposure; Exposure consisted of administration of Fluothane 3.6 mg/kg 40% solution in olive oil via stomach tube followed by exposure to 100% O2 at 1 atm for 2.5 hr; these animals were sacrificed at various times after removal from oxygen exposure as follows: one at 0 hr, two at 24 hr, three at 48 hr, and three at 72 hr. We are indebted to Dr. Henry Leon and Mr. Gerald Brooksby of NASA Ames labs for the opportunity to obtain the "Ames control" and "Ames Exp" immediately after exposure and to use their facilities for sacrificing the animals and preserving the brain tissue. All other animals were obtained from Simonson Labs, Gilroy, Calif. and quarantined in the animal quarters at the Institute of Chemical Biology for approximately one week before being exposed. COMPUTATIONS: Some computations were made on an IBM 1620 from mark sense cards marked in the laboratory. Due to difficulties in obtaining time on this computer, an Olivetti Programma 101 desk top computer was later utilized. Although calculation time is considerably greater with this computer, there is no need for mark sense cards. It also allows immediate checking of suspected errors against the raw data. Therefore total computation time is not significantly increased, and it is felt that there is less chance for error. The following values were calculated in relation to the amino acid: a) An instrumental constant for each standardized amino acid; b) the concentration in nanamoles per gram frozen brain weight (nM/g) for each ninhydrin-positive substance observed in each animal (for compounds without standardization this value was calculated in glutamic acid units); c) means -1s.d. for each substance over all animals in each group; d) Student's "t" ratio for each substance between each experimental group and the appropriate control group. #### DATA: Data are presented in Tables 1 through 14 which are appended to this report. Some of these tables contain mean values -1s.d. for each ninhydrin-positive compound found (concentrations are expressed as nanamoles per gram frozen brain weight, nM/g); others show student's "t" statistic computed for each experimental group and the appropriate control group, with significance noted where P<0.20. The tables are arranged as follows: - Table 1: A list of ninhydrin-positive substances found, keyed to the numbers assigned to these compounds for use in other tables. - Table 2: Concentrations for group SD Clb ("Ames control") and for each "Ames Exp" animal. - Table 3: Concentrations for Fluothane exposure combined and broken into sub-groups by delay after exposure. - Table 4: Concentrations for the four control groups; SD Cla, SD Clb, LE Cla, LE Clb. - Table 5: Concentrations for Long Evans animals involved in 100% oxygen exposure experiments: LE Cla, LE Clb, LE O₁₀₀₋₁₈, LE O₁₀₀₋₂₄, LE O₁₀₀₋₂₈. - Table 6: Concentrations for Sprague Dawley animals involved in 100% oxygen exposure experiments: SD Cl, SD $^{\rm O}$ 100-18, SD $^{\rm O}$ 100-50. - Table 7: "t" for comparison between species: LE Cl, SD Cl. - Table 8: "t" between Le control and 18 hr O_2 exposure: LE C1, LE O_{100-18} . - Table 9: "t" between LE control and 24 hr O_2 exposure: LE Cl, LE O_{100-24} . - Table 10: "t" between LE control and 28 hr O_2 exposure: LE C1, LE O_{100-28} . - Table 11: "t" between LE control and 18 hr He+O₂ exposure: LE Cl, LE $\text{He}_{80}\text{O}_{20-18}$. - Table 12: "t" between SD control and 18 hr $\rm O_2$ exposure: SD C1, SD $\rm O_{100-18}$. - Table 13: "t" between SD control and 50 hr O_2 exposure: SD C1, SD O_{100-50} . - Table 14: "t" between controls and fluothane exposure: LE Cl, Fluothane total. # OBSERVED EXPERIMENTAL DIFFERENCES: The following differences in concentrations of various ninhydrin-positive substances have been found for various groups of animals: #### Strain Difference: The concentration of Glycerophosphoethanolamine is greater (P < 0.02) in Long Evans rats than in Sprague Dawley. The concentration of Isoleucine may be greater (P < 0.20) in Sprague Dawley rats than Long Evans. # Oxygen Exposure, 100% at 1 atm.: For exposures of 18 hr, there were no significant differences observed in either species. For exposures of 24 and 28 hr, both performed on Long Evans rats, few differences were found which may be considered reliable: Although tyrosine was possibly significantly different in both cases (P < 0.20), in one case O_2 exposure increased the concentration and in the other case exposure reduced the concentration. In one case ammonia was decreased significantly (P < 0.002), but, as instrumental determinations of ammonia are affected by the atmosphere in the laboratory, and as there was no difference in ammonia concentration in any other group, it is reasonable to assume that this difference is an artifact of the analytical process. Exposure to O_2 for 24 hr reduced the concentration of phosphoserine (P < 0.02), but exposure for 18 or 28 hr did not. Exposure to 100% O_2 for 50 hours increased the concentrations of both glutamine and glutamic acid (P < 0.002 , P < 0.002). This may be a real effect; as the exposed group was small (N=3), it is felt that this exposure should be replicated. ## Helium-Oxygen exposure: Exposure to an atmosphere 80% He 20% O_2 for 18 hr made a highly significant reduction (P < 0.002) in the concentration of phophoserine. No other differences were more than possibly significant (P < 0.20 or 0.10). Analysis of longer exposures to this mixture will permit better evaluation of these data. # Fluothane exposure: Exposure of fluothane-pretreated animals to 100% O_2 for 2.5 hr lowered significantly (P < 0.002) the concentration of phosphoserine. No other changes were more than possibly significant (P < 0.20). These data are calculated from the combined values of all animals in the fluothane exposure group; the raw data will be further analyzed to determine if there was any effect due to the delay in sacrifice after exposure. #### DISCUSSION OF RESULTS: It is felt that these results are preliminary; they should be re-evaluated when data are available for a larger group of control animals and for longer exposures. It was reported earlier (N67-15883) that exposure to 100% O₂ may change the concentrations of free pools of several amino acids. These changes were not statistically significant. Two effects of oxygen exposure do appear significant: exposure in most cases reduces the concentration of phosphoserine; (exposure increases the concentrations of glutamine and glutamic acid. Strain differences appear to be non-significant. For this reason we will restrict our further experiments to a single strain - Long Evans. #### FURTHER WORK PLANNED The principle direction of further work will be toward examination of the effects of mixtures of oxygen and various inert gases. A beginning of this work was made with the helium-oxygen exposure. At the request of NASA we will work also with mixtures in which the inert component will be argon and neon; we will also make longer exposures in the helium-oxygen atmosphere. Due to the cost of these inert gases, we cannot use our present constant loss exposure equipment. We are developing a slightly different system including: a chamber which can be better sealed; a demand oxygen supply system; an oxygen concentration monitor. A new ion exchange resin has recently been released (Beckman Instruments) which will allow resolution of glutamine from asparagine, and reduce analysis time for acidic and neutral amino acids. We plan to utilize this resin. We will continue work on development of a more sensitive measure of serotonin and catechol amines. TABLE 1 Ninhydrin-position compounds observed in rat brain free amino acid pools - | | | ora boots | | |
--|---|---|--|--| | Compound | Elution
time, min | Identificatio
standard | n ^A Quantitative B standard | ICB
control
number | | Acidic and Neutral Compounds | | | | number | | Phosphoserine Glycerophosphoethanolamine Phophoethanolamine Taurine Urea Urea Unknown #1C Unknown #2C Unknown #3 Aspartic Acid Threonine Serine Glutamine Unknown #6 Glutamic Acid Glycine Alanine Unknown #4 alpha-Aminobutyric Acid Valine Cystathionine Methionine Unknown #5 Isoleucine Leucine Tyrosine Phenylalanine beta-Alanine beta-Aminoisobutyric Acid | 23
27
31
37
42
54
59
65
74
77
83
89
95
123
139
147
153
160
186
201
207
210
213
220
249
256
283
305 | ? ? ? C C ? ? C C C ? ? C C C ? ? C C C ? ? C C C ? ? C C C ? ? C C C ? ? C C C ? ? C C C ? ? C C C ? ? C C C ? ? C C C ? ? C C C ? ? C C C ? ? C C C ? ? C C C ? ? C C C C ? ? C C C C ? ? C C C C ? ? C C C C ? ? C C C C ? ? C C C C ? ? C C C C ? ? C C C C ? ? C C C C ? ? C C C C ? ? C C C C ? ? C C C C ? ? C C C C ? ? C C C C C ? ? C C C C C ? ? C C C C C ? ? C C C C C ? ? C C C C C ? C C C C C C C ? ? C C C C C C ? ? C C C C C C ? ? C | | 2
3
4
5
6
8
9
11
21
13
14
15
24
7
18
19
20
21
22
26
28
29
31
33
35
36
37 | | Basic Compounds | | | | | | gama-Aminobutyric Acid Ornithine Ethanolamine Ammonia Lysine Histidine Carnosine Tryptophane Argenine | 102
112
127
134
149
182
235
244
329 | C
C
C
C
C
C
C | G
G
S
S
S
G
G
S | 40
41
43
44
46
48
50
54 | #### FOOTNOTES TO TABLE 1 - A. C=compared to known standard ?=tcntative-agrees with published data ??=unknown - B. S=standardized values used for calculations G=Glutamic Acid units used for calculations - C. Unknowns #1,2,3, (??#1, ??#2, ??#3) Examination of the chromatograms for 71 animals indicates that the data presented regarding the ninhydrin-positive substances ??#1, ??#2, and ??#3 may be erroneous. It appears that ??#2 may sometimes be eluted with ??#1, sometimes with ??#3, and sometimes well enough separated from either to be observed as a separate substance. Our unsubstantiated opinion is that there are three separate ninhydrin-positive substances eluted in that portion of the anlysis, but that various parameters of the analytical process cause contamination of the data. These substances are present in the brain in low concentrations only, and until they are identified the importance they may play in brain metabolism under any conditions is unknown. For these reasons we do not plan to follow up with special research on these substances during the period of this grant unless fortuitous circumstances present us with more concrete information regarding them. #### D. Glutamine The identification of Glutamine is uncertain. We find that our Beckman 120-C when operated in accordance with the Beckman instruction manual based on the work of SPACKMAN, STEIN, and MOORE [Anal. Chem. 30, 1190 (1958)] will not resolve both glutamine and asparagine when they are present in amounts greater than approximately 0.05 µM in the analysis sample. The compound eluted from our brain samples at this point on the chromatogram is present in the sample in an amount on the order of 0.20 µM. We assume the tentative identification of this peak as exhibited in brain sample analysis to be glutamine rather than asparagine because of work report by SHAW and HEINE [J. Neurochem. 12 151 (1965)], by MUSSINI and MARCUCCI, and by TALLAN [both in Amino Acid Pools, J. T. Holaen, ed., New York: Elsevier (1962)] and others. However, it is equally possible that both substances are present and cannot be differentiated by our analytic technique. It is hoped that a new resin may resolve these separately (see FURTHER WORK). # E. alpha-Aminobutyric Acid SHAW and HEINE reported an unknown substance in rat brain tissue eluted between alanine and valine. We find two compounds in this area, one of which we have identified as alpha-Aminobutyric acid by comparison with a known standard. It should be noted that we use a different analytic # FOOTNOTES TO TABLE 1 cont'd. instrument with different ion exchange resins and buffers of different pH, so we cannot state with certainty that we have identified the peak SHAW and HEINE reported as unknown. #### F. Valine The values reported for valine may include some cysteine. Our instrument does not always satisfactorily resolve cysteine and valine. #### G. Ammonia Values for ammonia cannot be considered accurate due to contamination of atmosphere in the laboratory. | | | Clb | Ames
Exp 1 | Ames
Exp2 | |---|------------|---|---|---| | AA# | 11M/9 N:4 | s.d. | n/4/9 N=1 | n/4/g 1:5 | | 2345689011214
15718
1921
212
2567
289
314
35
367
344
446
48554
56 | 127
236 | 18
36
1088
175
237
103
32
50
318
217
349
106
83
14
11
826
217
43
14
16
16
16
16
16
16
17
17
16
16
17
17
17
17
17
17
17
17
17
17 | 1990
1990
1990
1135
538
978
692
208
93
37
4
40
84
41
12
2693
373
111
12
135
111
12
135
135
135
135
135
135
135
135 | 291
79
1002
854
55
63
2801
1507
4115
1610
1227
424
 | table 3 | (| SD C. | la | , SD | C1 * | LE | Cla | ı | LE | C1 _b | | | |---|---
--|--|--|--|--|---|--|--|---|--| | A.A | mean, | हव । | 11124A
11/11/9 | Sd N | HM/q | f | ٨ | meun,
nM/q | ક.તે. | N | | | 23
4
5
6
8
9
10
11
12
13
14
15
17
18
19
20
21
22
25
26
27
28
29
30
31
34
35
36
37
40
41
43
44
46
48
56
56
56
56
56
56
57
57
57
57
57
57
57
57
57
57
57
57
57 | 78
214
412
684
58
69
65
360
796
850
360
796
854
870
446
9
64
80
47
18
33
58
69
47
147
2237
235
52
21
58
129 | 24 5
112 2
211 2
160 44
16 2
121 963 2
187 158
149 1
194 8
194 8
194 8
194 8
194 8
194 8
194 8
194 8
194 8
194 8
198 8
1 | 127
236
1352
1495
1495
1462
1495
1462
1495
1462
1462
1462
1462
1462
1462
1462
1462 | 18 4
36 4
1088 4
175 4
237 4
11 4
3 4
32 4
318 4
217 4
349 4 | 103
353
716
694
82
76
103
398
590
1036
1711
857
105
106
107
107
107
107
107
107
107
107 | 8
67
365
81
25
39
21
21
21
21
21
21
21
21
21
21 | N 5 5 8 5 5 6 0 5 5 5 5 4 5 5 5 4 4 5 0 5 0 5 5 5 5 5 |
98
221
37236688
19007728
1007728
1450348
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
12148
1 | s.d. 27 93 147 573 16 15 246 158 100 548 100 924 160 10 924 160 19 53 | 6 6 6 6 6 1 2 4 6 5 6 6 6 6 6 3 2 6 1 5 0 6 4 6 6 6 | | * S.D. C16 is same group as Ames Control in Table 1 # table 5 | A ## mean 5d N | • | LE CI | a | LE | C1 b | LE | 0,00-18 | i | LE | 0,00-2 | 4 | LE | 0,00- | 20 | |---|---|--|--|---|--|---|--|---------------------------------------|--|---|---|--|---|-------------------------------------| | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | AA# | mean : | | | sd N | | | | | | N | | | | | 56 147 30 5 118 53 4 129 29 3 80 21 3 143 23 6 | 23
45689
11
12
13
14
15
11
11
12
12
12
12
12
13
14
15
14
14
14
14
14
14
14
14
14
14
14
14
14 | 103
353
716
694
82
76
10
43
398
590
1010
636
1711
857
493
10
54
30
70
70
54
30
10
10
10
10
10
10
10
10
10
1 | 875355205554555445055555555555555555555555 | 98
219
319
3723
366
48
476
476
476
476
476
476
476
476
476
476 | 27 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | ### 83
213
465
533
531
35
71
496
668
522
1394
749
436
25
275
39
40
43
1565
168
2063
271
566 | 38
10
58
10
58
45
23
42
19
19
19
10
10
10
10
10
10
10
10
10
10 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 37
37
37
38
21
21
21
21
21
21
21
21
21
21
21
21
21 | 5d 24 63 177 830 31 520 215 31 520 216 848 272 203 7 13 11 443 382 22 | N 4 4 4 4 4 5 2 1 2 5 5 5 5 5 5 5 5 0 2 5 0 4 4 2 5 5 5 5 5 2 0 5 5 4 5 5 5 0 5 | Mean
93
364
709
4251
4251
4251
426
427
428
428
437
428
437
448
448
451
451
451
451
451
453
453
453
453
453
453
453
453 | 5d
45
134
159
146
177
186
195
187
126
187
127
133 | N 666663366666665230666366428456636 | mean values expressed in: nM/g | AA# Mean 6d N mean 5d N mean 5d N 2 78 24 5 76 25 8 73 11 3 3 214 112 5 313 83 8 208 73 4 412 211 5 638 223 8 565 89 3 5 684 160 4 686 283 8 4070 397 3 8 69 16 5 50 24 6 47 10 3 9 65 — 1 114 120 5 — 0 11 350 121 4 80 126 62 — 1 12 850 963 5 439 306 8 1839 255 2 13 360 539 4 562 244 8 507 119 3 14 796 187 5 858 115 8 725 113 3 15 688 158 5 692 107 8 3077 489 3 17 1654 149 5 1491 203 8 855 9 506 3 18 870 194 5 795 141 5 704 46 3 19 446 83 5 411 71 7 445 29 3 20 — 0 1 — 1 4 1 2 21 — 0 1 — 1 4 1 2 22 64 12 5 63 7 8 57 5 3 24 6 9 9 6 6 7 9 8 23 13 3 25 — 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | SD | C1 | SD | 0100-18 | 50 | 0100-50 | |--
---|---|--|---|--|--|--| | 2 78 24 5 76 25 8 73 11 3 3 214 112 5 313 83 8 208 73 3 4 412 211 4 638 223 8 565 89 3 5 684 160 4 686 283 8 4070 397 3 6 58 44 5 73 11 64 47 103 3 9 65 -1 114 1203 | AA# | mean | sd N | MEAN | 50 N | mean | 5& N | | | 274568911
1234578
19021
22427
233145
367
4143 | 78
214
4124
68
65
65
65
65
65
65
65
65
65
65
65
65
65 | 24211046 145455555105055555555555555555555555555 | 7638630409282151613
68751409282151613
68751409282151613
6844612682075802266
1232626 | 25333140264573114 7 9373737643395593983
221102114 7 9373737643395593983
23140264573114 7 9373737643395593983 | 7385047
29575794584733
4064 63975794584733
15727594584733
1586341028
151263 | 11 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | # table 7 | - | | S.D. con | urol | L | . E. co. | utrol | | | | | |--|---|----------|------|---|----------|-------|------|---|---|----------| | anine oid at | N | mean | ક હ | N | भाडवभ | 5. d. | d.f. | S | 130 | Pi | | 2 3 4 5 5 6 5 6 5 9 11 12 13 14 15 15 17 18 15 17 18 15 17 18 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | T | T | T 7 | | | 7 | 18 | \$ 26.025 96.457 598.838 1268.586 183.771 25.508 4.743 127.062 784.693 290.093 235.005 765.781 2680.913 152.445 129.830 9.088 3.221 19.324 28.000 24.648 12.931 5.537 5.206 9.977 16.960 17.410 4.000 8.869 656.460 10.159 66.833 1389.781 84.511 16.536 28.750 | .038
2.674
.369
1.140
1.050 | P1, 6.02 | | | L | .E. con | erol | LE | 0100 18 Ar | | | | | | |---|---|---|--|---|---|--|---|--|--|---------------------------------| | anino acid at | N | nean | s.d. | N | mean | ' | d.f. | ${\mathfrak S}$ | 121 | Pis | | 23
4
5
6
8
9
11
12
13
14
15
17
18
19
22
21
22
25
27
28
29
30
31
37
41
43
45
45
57
41
45
57
41
57
41
57
57
57
57
57
57
57
57
57
57
57
57
57 | 11 11 11 11 1 4 9 11 0 1 1 11 7 6 11 2 10 - 11 11 11 10 8 5 11 11 11 11 11 3 11 9 | 100
280
608
2348
58
59
40
1218
598
811
1739
5190
776
400
105
58
20
45
21
59
48
71352
188
71352
188
7139
65
134 |
20
106
275
1637
28
31
839
135
265
1039
3587
152
110
5
4
21
28
20
11
26
8
19
23
4
579
1792
106
21
1736
41
1736
41
1736
41
174
1792
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
17 | 373333333333333333333333333333333333333 | 83
213
465
533
57
271
496
668
522
1394
749
431
668
249
47
48
25
27
27
27
27
27
27
27
27
27
27 | 38
10
58
45
23
4
27
19
31
60
9
12
42
44
53
10
11
11
12
13
17
59
29 | 12
12
12
12
12
12
12
12
12
12
12
12
12
1 | 23.958
96.850
252.153
1494.482
24.731
27.230
5.019
27.784
765.978
122.380
242.332
939.842
3274.683
156.823
101.210
5.267
4.000
19.519
18.800
10.173
2.000
5.715
7.483
17.464
20.843
3.558
6.000
531.677
10.049
68.146
1636.550
97.588
19.382
12.529
33.068
38.897 | .709
.691
.567
1.214
.283
.734
.796
1.187
1.236
.833
.590
1.294
1.159
.172
.306
.750
.461
.159
.750
.461
.159
.750
.461
.133
.515
.335
1.124
.666
.400
.199
.719
.719
.719
.719
.719
.719
.719 | No values significant at PL0.20 | | | L. | E. con | 1106 | LE | 0100 24 8 | ir | | | | , paggy, agini hilipitan to ay a 'are'i | |--|--|---|---|--|--|--|--|---|---|--| | वमांगव व्हांड स | N | nean | 5. d. | N | mean | 5. d. | d.f. | 5 | 'E' | Piss | | 2
3
4
5
6
8
9
11
12
13
14
15
17
18
19
20
21
22
25
26
27
28
29
30
31
34
35
36
37
40
41
43
44
45
50
50
50
50
50
50
50
50
50
5 | 11 11 11 4 9 1 10 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100
280
608
2348
53
40
1218
598
811
1739
5190
776
400
10
58
20
45
28
54
48
33
87
1352
18
87
1939
230
64
1939
134 | 20
106
275
1637
28
31
839
135
205
1039
3587
152
110
54
21
28
20
11
28
20
11
21
21
23
4
4
17
17
10
10
10
10
10
10
10
10
10
10 | 4444452255555555 2 4 4 4 2 5 5 5 5 5 5 5 | 39
137
388
1626
12
42
176
848
396
484
1640
4532
438
241
30
23
241
1015
48
1461
175
36 | 24
63
177
830
7
33
215
31
520
162
216
848
2727
212
108
-
3
0
7
13
14
11
0
443
97
22
15
21
21
21
21
21
21
21
21
21
21
21
21
21 | 13
13
13
13
13
14
14
14
14
14
14
14
14
14
14
14
14
14 | 20.990
97.770
255.739
1490.079
23.918
29.515
107.625
31.000
761.615
143.848
251.974
984.186
3363.796
171.300
109.432
3.851
20.448
20.000
9.754
1.906
6.301
9.695
17.716
20.086
3.741
543.625
9.296
66.483
1528.218
103.508
21.290
31.464
37.854 | 2.906
1.462
.860
.484
1.923
.372
1.551
.193
.485
1.404
1.297
.100
.195
1.973
1.452
.259
1.222
.450
2.050
.524
1.428
2.475
1.411
.647
1.069
.619
1.506
.586
8.292
.531
.953
1.426 | 20
.20
.20
.20
.20
.20
.20
.20
.20 | | | | | | | | | | | | :

 | | | L. | E. 2011 | rol | LE | 0100 28 | hr | | - | | and the second seco | |---|--
--|---|--------------------------------------|--|---|--|--|---|--| | anino acid # | N | nean | 5. d. | N | mean | 5. d. | d.f. | S | 't' | Piss | | 23
45
68
911
12
13
14
15
17
18
19
20
21
22
23
24
27
28
27
28
27
28
29
31
43
44
46
48
57
57
57
57
57
57
57
57
57
57 | 11
11
11
11
11
11
11
11
11
11
11
11
11 | 100
280
608
2348
58
59
40
1218
598
811
1739
5190
776
400
10
58
20
45
21
52
548
33
87
1352
188
87
1939
230
45
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939
1939 | 20
106
275
1637
28
31
839
135
105
105
105
105
112
106
112
107
112
107
112
107
112
107
112
107
107
107
107
107
107
107
107 | 6666676666666523 6 66666642645666766 | 93
364
709
4244
51
45
1072
604
773
3560
9702
915
453
144
70
44
28
28
370
57
10
10
10
10
10
10
10
10
10
10 | 45
134
159
949
157
14
167
186
195
100
15
100
15
100
15
100
15
100
15
100
15
100
100 | 15
15
15
15
15
15
15
15
15
16
12
14
15
15
15
15
15
15
15
15
15
15
15
15
15 | 30.686
116.086
242.577
1444.545
23.685
23.216
10.000
26.264
818.855
155.150
246.084
912.466
3314.267
142.136
89.861
5.422
3.674
19.600
18.371
10.099
3.829
6.000
7.141
16.360
18.780
3.521
6.000
484.923
9.942
62.869
1464.104
88.620
19.476
14.713
32.254
35.184 | .228
.723
.416
1.312
.295
.344
.400
.533
.178
.038
.154
1.995
1.361
.977
.589
.737
.272
.612
.054
.693
.783
1.000
1.260
1.344
1.277
.568
.833
.606
.804
.143
.493
.248
.295
.883
.372
.255 | .10 .20 | | | L | .E. cont | rol | LE | He BO DIO | 18hr | | | | | |--|--|--
--|--|--|---|--|---|---|--------------------| | amino acid it | N | nean | s. d. | N | ที่ประสา | 5. d. | d.f. | s | 12, | Phs | | 23
4 5 6
8 9
11
12
13
14
15
17
18
19
20
21
22
25
26
27
28
29
30
31
31
43
43
44
45
45
56
57
57
57
57
57
57
57
57
57
57 | 11 11 11 11 11 11 11 11 11 11 11 11 11 | 100
280
608
2348
53
9
40
1218
598
811
1739
5190
776
400
10
58
20
45
21
22
54
33
87
1352
18
87 | 20
106
275
1637
28
31
839
135
265
1039
3587
152
110
54
21
28
20
11
28
20
11
74
1792
106
21
1792
106
21
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1793
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1794
1 | 15
15
14
15
15
14
15
15
15
14
15
15
15
15
15
15
15
15
15
15
16
16
17
16
17
17
17
17
17
17
17
17
17
17
17
17
17 | 29
142
530
2515
22
77
126
50
1763
379
644
1164
5886
620
455
19
36
1317
68
1317
68
1756
192
39
35
39
73 | 15
61
268
1289
15
66
90
52
816
203
281
557
3173
265
206
18
19
8
5
8
18
23
16
2
748
108
21
32
29 | 24
23
24
23
24
21
20
22
24
22
24
24
25
24
24
25
24
25
24
25
25
26
27
27
27
27
27
27
27
27
27
27
27
27
27 | 17.260
82.778
271.065
1450.599
20.856
53.550
81.712
44.797
825.661
178.343
274.446
790.538
3359.275
224.924
172.615
3.446
14.877
19.306
19.397
9.367
3.734
7.199
14.524
21.424
19.047
3.162
679.704
8.985
56.542
1431,141
107.135
21.000
28.530
28.412
34.307 | 4.113
1.667
.287
.115
1.726
.354
1.431
.223
.660
1.227
.608
.727
.207
.693
.318
1.450
.941
1.139
.876
.747
.267
.972
1.101
.093
.052
.632
.051
1.112
.330
.127
.354
1.190
.500
.915
1.778 | .002
.10
.20 | | | | | | | | { } | | | | | | | | SD co | ntrol | 5. | D 0100 | 18 hr. | | | | | |---|---------------------------------------|--|---|---|--
---|---|--|--|---------------------------------| | anino ceid ir | N | พะภท | s, d. | N | mean | s. d. | d.f. | S | 't' | Piss | | 2
3
4
5
6
8
9
11
12
13
14
15
17
18
19
20
21
22
26
27
28
29
30
31
31
43
46
48
50
51
50
50
50
50
50
50
50
50
50
50
50
50
50 | 9998994998999954919399999999999999999 | 99
228
829
901
251
54
181
678
365
798
721
1802
861
400
18
72
37
12
31
67
43
20
1177
21
122
1777
229
53
38
68
133 | 32
83
844
283
274
223
177
111
198
297
151
170
29
215
411
170
29
215
417
410
742
576
576
576
576
576
576
576
576
576
576 | 888888368888888888888888888888888888888 | 76
313
638
638
73
50
114
439
562
858
692
1491
795
411
63
648
120
277
128
2326
262
150 | 25
83
223
223
244
120
306
115
107
244
115
107
147
143
39
55
77
39
8
23
125
25
25
25
25
25
25
25
25
25
25
25
25
2 | 15
15
15
15
15
15
15
15
15
15
15
15
15
1 | 28.944
83.000
634.916
283.000
200.242
22.955
75.930
139.049
559.739
337.977
160.088
149.134
257.440
147.521
123.245
8.786
1.000
13.304
57.974
7.681
11.952
6.358
96.281
9.674
14.000
5.507
3.605
7.627
543.696
675.125
42.306
675.125
42.306
87.557
15.508
27.557 | .794
.301
.300
.759
.888
.174
1.448
.726
.426
.582
.374
.194
1.208
.447
.089
1.365
.000
.751
.068
1.562
.251
.943
.519
.103
.071
.907
.832
1.038
1.038
1.655
.810
.089
1.125
.435
.386
.680 | No values significant at P<0.20 | | | SD control | | | | SD 0100 50 hr | | | | | | |---|------------------------------------|---|--|--|--|---|--|---|---|------| | वभागाव व्हांते श्रे | M | mean | 5. d. | N | niean | 5. d. | d.f. | \$ | 14, | Piss | | 2
3
4
5
6
8
9
11
12
13
14
15
17
18
19
20
21
22
25
26
27
28
29
30
31
34
35
36
37
40
41
43
46
48
50
50
50
50
50
50
50
50
50
50 | 9998994998999954919399999999999999 | 99
228
829
901
251
54
181
678
365
798
721
1802
861
400
18
173
16
72
37
12
31
67
43
9
20
1177
229
53
38
68
133 | 32
83
844
283
274
22
177
711
411
191
178
297
153
151
17
29
15
15
17
4
10
74
29
55
57
57
57
57
57
57
57
57
57
57
57
57 | 333337 1233333322313 3333333333333333333 | 73
208
565
4070
64
47
62
1839
507
725
3077
8559
704
445
8
45
23
24
23
51
41
10
15
1586
141
210
62
38
65
146 | 11
7
89
397
22
10
0
255
119
1489
506
29
13
489
506
29
13
489
135
14
36
188
135
14
15
112 | 100190 - 89910010010 100000000000000000000000000 | 29.041
74.303
755.945
311.954
245.270
177.000
675.704
366.783
178.153
270.502
348.961
138.384
135.679
11.704
1.000
15.368
26.581
13.885
7.211
3.687
10.963
13.623
6.511
3.820
9.808
666.405
8.246
51.388
522.005
40.666
7.496
29.000
15.033
20.396 | .895
.269
.349
10.158
.762
.672
1.718
.387
.409
8.709
19.363
1.134
.331
.854
3.000
1.041
—
1.843
.936
.554
2.169
.912
1.174
.307
.261
.509
.613
.970
1.517
.490
.467
1.200
.000
.199
.637 | .002 | table 14 | | L | E cont | trol | | Fluothane total | | | | | | | |---|----|---
--|---------------------------------------|--|---|----------------|--|------------------------|--------------------------------|--| | anino acis # | N | พรลน | s.d. | N | mean | 5. d. | d.f. | S | 12' | Pis | | | 2345689
11
12
13
14
15
17
18
19
20
21
22
25
27
28
29
31
35
36
37
46
48
50
54
55
55
56 | 11 | 100
280
608
2348
53
40
1218
811
1739
5190
776
400
15
20
45
21
22
54
48
33
87
1352
187
1939
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949
1949 | 206
1075
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1 | 999996 9899999758 8 87889976999999599 | 27
133
282
2321
24
20
9
857
342
545
2519
5246
639
299
28
21
25
24
25
27
27
27
27
27
27
27
27
27
27 | 13
38
94
644
11
10
2
572
168
1469
2277
124
386
13
14
17
27
97
17
17
17
17
17
17
17
17
17
1 | 18
18
18 |
17.243
82.969
214.338
1293.478
21.419
21.908
4.000
732.449
150.331
211.876
821.597
2677.871
140.247
85.813
18.721
3.054
19.819
15.698
10.599
2.423
6.430
11.960
15.380
16.861
3.234
4.268
502.459
8.439
55.833
358.628
79.557
19.324
9.949
27.235
74.404 | 1.771
1.520
.133 | 20
-20
-20
-20
-20 | |